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CHANNELS THAT COOPERATIVELY SERVICE

A DATA STREAM AND VOICE MESSAGES, II

DIFFUSION APPROXIMATIONS*

J. P. Lehoczky
Carneige-Mel Ion University

Pittsburgh, PA

D. P. Gaver
Naval Postgraduate School

Monterey, CA

1. INTRODUCTION

In this paper, the study of the behavior of an element of

a communication system carrying both data and voice traffic is

continued. In a previous paper, Gaver and Lehoczky (19 79) , a fluid

flow approximation was developed to predict the characteristics of

the data queue length for such a system. The fluid flow approach

applied to the case in which the data service rate, n , was large

compared with the voice service rate, u ; for example, when

4
n/p ~ 10 . In this paper, a different approach is taken: a Wiener

process approximation is developed. The accuracy of this approxi-

mation depends on the 'heavy traffic" assumption, that is that

the overall traffic intensity should approach unity from below.

One need not make any assumption concerning the individual

parameters. It follows that the diffusion approximation comple-

ments the fluid flow approximation to give a more complete picture

of the behavior of voice-data communication systems.

*
Research in part sponsored by ONR at Naval Postgraduate School
N001480WR00067, and in part by NSF at Carnegie-Mellon University,
ENG79 05526.
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The communication system to be studied is essentially

a part of the SENET network as described by Coviello and Vena

(1975) or Barbacci and Oakley (1976) . This network employs

time-slotted frames. A certain portion of each frame is allocated

to voice traffic, while any data traffic can use all remaining

capacity including any left unused by voice. The voice traffic

cannot use any unused data capacity and operates as a loss system.

We introduce probabilistic assumptions, conventional in

many queueing studies. Voice traffic arrives according to a

Poisson(A) process, and each voice customer has an independent

exponential (u) service time. Data arrivals are governed by

an independent Poisson(S) process and exhibit independent

exponential (n ) service times. A total of c channels are re-

served for exclusive use of data, while v channels can be used by

both data and voice; however, voice pre-empts data. The assump-

tions imply that voice can be modelled as an M/M/v/v loss system,

and the well-known "Erlang B" loss formula will give the loss rate.

We focus our attention on the behavior of the data queue and seek

to develop expressions for the steady-state distribution and the

mean queue length. Many authors have studied such a system, in-

cluding Halfin and Segal (1972), Halfin (1972), Fischer and Harris

(1976), Bhat and Fischer (1976), Fischer (1977), Chang (1977),

and Gaver and Lehoczky (19 79) . Only the latter paper gives

approximations valid for the extreme but realistic case in which

n/y is large, and none give a Wiener approximation.



Rather than focus on this simple version of the problem,

we wish to provide a somewhat more general analysis. The generali-

zations arise when one considers more complex voice service.

Two types of generalizations are rated here.

In general, voice traffic is unlike data traffic. A voice

communication is actually a series of bursts or talkspurts

separated by silence. It is reasonable to model a conversation

as a two-state Markov chain of alternating talk and silence. Ex-

ponential holding times are appropriate for talkspurt and silence

lengths, see Brady (1965). During the periods of silence, the

voice channel is available for data traffic. This extra channel

capacity can serve to allow for increased data utilization, or to

reduce the data queue length, or both. The voice process can be

described by a Markov chain for which each state provides a

description of the number of voice customers requesting service

and the number actually using the channel. For each voice state

one can compute the number of channels available for data, and

thus the data transition rates.

A second generalization allows for the addition of extra

voice channels by reducing the quality. One strategy available

to provide adequate voice and data capacity is to assign voice

users to certain acceptable quality voice channels, say 6 or 8

KBPS- When a specified number of voice users are in the system,

new voice users are assianed to less acceptable channels, say with

2 or 4 KBPS- In this way, one has increased the number of voice

users that can be serviced at the expense of the nua.litv of the voice

3



transmissions. This situation can also be incorporated into

our structure. One again defines voice states: each state

provides a description of the voice channels in use. One can

specify a generator Q for the Markov process over the states

and use it to compute the channel availability for data for

each state. To include this and other possible generalizations,

we assume that the voice process is a continuous time Markov

chain with finite state space and that it subordinates the data

queue length process. We will work out formulas for the special

case in which the voice is an M/M/v/v queueing system.



2 . Diffusion Approximation Approach

We assume that the voice process (V(t) , t ) 0) can

be described by a Markov chain with state space {1,2,... ,N} .

We let this Markov chain have Generator Q = (q. .) , an N x n

matrix, and stationary distribution tt . An important special

case occurs when voice operates as an M/M/v/v loss system in

which case

Q = yS = y

/- v

1

V

-<l+p
v )

r
v-l

V

r^
V

(v-l+p )V V

(2.1)

and then tt = (tt ... , tt ) with

-v

TT . =

1 / i

P /l •

V

I pVj'
j=0

v

PV =
U



Each voice state i gives a number of channels available

for data, say c. From c. one can compute the rate, r., at

which the data queue increases or decreases. Here r .
= 5 - nc^

We let

r
l

R =

C

\

(2.2)

r
N

/

N
For stability one requires I-_i ff-r. < 0. In the

special case for which Q is given by (2.1), these conditions

become

i
v p

I
^ (5 - ( C + v - i)n) <

i=0
1 *

where data has exclusive use of c channels and the voice has

v channels. This condition can be written p < 1 where

> = A/u , and q is theM - (Mj -r My V J- H' 1 / V<- "TV//
d

-
'

blocking probability

-

q =
Pv/v.

We develop a Wiener process approximation under a heavy-

traffic assumption that J r . tt . f 0. This entials finding an

appropriate infinitesimal mean and variance. Locally the data



queue length process does not resemble a Wiener process. If

voice is in state i, the change in the data queue is nearly

deterministic and equal to r . dt rather than a normally dis-

tributed random variable. Nevertheless, if we consider a longer

period of time, say [t, t + T] with T large, then the change

in queue length will be more reasonably assumed to be normally

distributed. The next section contains the outline of a proof

that a suitably sealed version of the process converges to

a Wiener process. This proof does not require the fluid flow

approach of ri/y large, so a slightly more refined variance

term is derived. The Wiener process derived will have a reflect-

ing barrier at .

The voice process subordinates the data process; see

Feller [ ] , pp. for the notion of subordination. If voice

is in state V(t) , then the data queue is increasing at rate

r , , over [0, t + dt] . The expected change over [t, t+T]

is given by

t+T t+T t+TN
E I r

V(s)
ds =

/ E(r
V(s)

)ds =
/ .1 r.P(v(s)=i)ds

For the case of T large we can assume V(t) has the stationary

distribution, thus V(s) has distribution tt for all s. The

rNexpected change over [t, t + T] thus becomes T £._r.7T.. Notice

that the data queue is very large, so the boundary is not en-

countered. For a Wiener process, this expected change would be



mT again assuming that the boundary is not encountered. We

thus find

N
m = I r.ir. = tt Rl (2.3)

1=1

2
We follow a similar method to determine a . The variance

in the change in the data queue length over [t, t + T] is given

by
t + T

Var
J

r
V(s)

ds
'

We again assume V(s) has distribution n, so this variance is

equal to

T
Var

/
r
V(s)

ds

T T T
" M

[
r
V(s)

ds)2 - (E
/ r

v(s)
ds >

2
= E( / r

v(s)
)2

- <£8i
)2 T

'

The last term can be computed to be

E(/
T T T T T

V.( S )

ds) = E
/ / r

v( S )

r
v(t)

dsdt =/ / E(r
v(s)

r
v(t)»

dsdt

T T N
= 2 / / I r P(V(s)=i) E(r,. Jv(s)=i)dsdt

i=l 1 V{t)

T T N N
= 2 I I I r.TT. [ r. P(v(t)=j|v(s)=i)dsdt .

i=l 1 ^^ j=l ^



We let p..(u) = P(V(u)=j|v(0)=i) and P(u) = (p..(u)).
1 j 1 j

The Kolmogorov forward equations give P(u) = exp(gu) where

2
exp(M) = I + M + M /2 '. + ••• for a square matrix M. One can

reexpress the second moment in matrix form as

T
E(/

V(s)
2

T t
ds) = 2 / / ttR exp(Q(t-s)) Rl dsdt

~~

T t
= 2ttR J / exp(Qu) dudt Rl .

In view of the fact that Q is singular, one can most

easily carry out the required integration by introducing the

eigenvalue decomposition Q = $Dy with

/

D =

o \

N

a diagonal matrix of eigenvalues

,

= (1» & 7 > • • • r &»)N 7
' 1 = (;n> &<>> ••• ' kJ '

the associated right- and left-eigenvectors. Here $^ = V$ = I.

Since Q is irreducible and finite 0. has a negative real part

for 2 < i < N. It follows that



T t T t

/ / exp(Q )dudt = $ / / exp(Du)dudt
~U ~ ~

fT
2
/2

¥ = 2$

a.
\

N

_ • _ •
e

•
T

with a. = 6
1
(0 (e

1
-1)). Since 9. has a negative real part

a. ~ -T/G. as T -> °°. For large T, the second moment can be

written approximately as

T
2tt R<f>

/

'
;

\

/2

-T9
-1

C \

VRl ,

-T tf

thus the variance is given by

i • c \
i°

T
2

tt

+
R

\

o

L

t
VR1 - 2T?r R$

>;'

\
c

6
N

\

YRl

2 + 2
- T

Z
(tt Rl) .
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The first and last terms cancel to give

rp

Var(/ r„,
x
ds) = -2Ttt R<I>

J VIC ~ ^*s^JV(s)

-i r.
2

VR1

tf

(2.4)

For a Wiener process, this variance would be given by To .

We let

Q = $
'?

J

(2.5)

so Q is a reflexive generalized inverse of g obtained by

reciprocating nonzero eigenvalues. We note that both QQ Q = Q

and Q QQ = Q hold, thus we write

r\> r\j

O " T —

T"
= "^ 58 Si

III = 7T Rl <

(2.6)

The crucial parameter 2m/a can thus be calculated.

We illustrate the formulas in (2.6) for the special

case where £) is given by (2.1) . For this case

11



L
1 T

o

o
VR1 = - 7T

T
RS'R1

d

IT — m T —

For our choice of S , S 1 = , thus
s^s r\_/

a IT- T -V = ~ if RS (R - ml)l = - ttRS y

where y = (R - ml)l. We note that it y = 0, so if z = S y,

T
then Sz = y is a consistent set of equations and tt z = 0.

In general one can solve (2.6) by direct calculation

of Q ; however, this is rarely possible. A second approach is

T
to solve Qz = y subject to tt z = 0. For Q of form (2.1),

this can be carried out. The equations become

pv
(z

i
" z

i-l } " (i_1) (z
i-l " z

i-2 )
= r

i-l " m
, 1 < i < v

-v(z
v

- z ) = r
n

- m (2.7)

v p

I -4 z. = o.

i=0
l! X
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One can easily find

k-1
V tt . (r .

- m)

j = Q J 3

We define

k k-1 p tt. ,Kv k-1

k

T
k

=
I *i

(aH " m)
K

j=0 : :

Thus T =0 and z, - z, , = T, _/p tt, , . Moreover
v k k-1 k-1 v k-1

:

= z
o

+ X z
i

= z
o

+
.1 p-^1:

1=1 - n=l "v i-.

v VThe ) . « tt . z . = condition qives^1=0 ii 3

v k T . n

, = - y tt y J" 1

'°
k=l

k
j=l Vj-l

"

The vector z has now been explicitly determined, and it remains

to compute

- TT

T
RZ = - TT

T
R(z

rt
l + (0, U, , ... , U ))

with
k T. .

u = y J" 1

k . S p T. .

3=1 ^v j-1
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We find

i
v k T.

n

y y y
k£ x

k k .£
1 pv

tt._.

1
v k T

i-1
= — y it, (r, -m) y

y , n k k .

L
, p tt . ,

k=l i=l v i=l

, v T. v , v T. i-1
=
h I TiF

1- * \ (Vm) =
h I TT^ ( " !

7r

k
(r
k"

m))
y i=l p v^i-l k=i K K y i=l ^Vi-l k=0

K K

2 2
, V T , , v-1 T.

_ 1 y 1-1 1 v 1

i=l v l-l i=0 v l

We thus derive

2
1

v-1 T
2

i
-5- = - I

—i-
f T = J ir.(r.-m) (2.8)

y i=0 v i
1

j=0 D D

For the special case considered r. = S - (c+v-j)n

= n (p - (c+v) + j). One finds

v p^

m = I 1(Pj " (c+v)+j) -tt*
i-0

d J
' 3' S

v

= n [pd
- (c+v) + Pv

(l-q)

]

where q = p^/v!S
v

is the blocking probability. Thus

m = -n (c+v) (1-p) . Plugging into (2.8) we find

14



2 2 v-1 ( X 5T [P<r (c+V)p + ^
])2

£_ _ n y j=Q J

pvy i=o s pVi!
v v'

- «l/*lThis can be simplified by letting q. = p /ilS., the blocking

probability for an M/M/i/i system with traffic intensity p .

We find

2 2 i
2 n p v-l S. (q.-q ) i P

V = -I F1 -^-^ . S. = I -£ . (2.9)

The special case v = 1 gives

2 2 p
a _ n v
2 y

(1 + p )

2

v

We thus have given explicit formulas for the infinitesimal

mean and variance of a Wiener process with reflecting barrier at

One can therefore use standard results for Wiener processes with

reflecting barriers to derive the stationary distribution— it

2
will be exponential with parameter 2m/g . The stationary

2 2
mean queue length will thus be g /2m; where g and m are

given by (2.6) and (2.8) . For example when v = 1 and c =

2 pg n v
2m y (l-p)(l+p

v )

3

15



/This is developed under heavy traffic conditions, i.e., p / 1

For such conditions

'd + r^V* 1

v

or

p d " rrp-
V

-

It follows that the above expression is also

P Pjv d

y (1-p) d + Pv )

2

in agreement with Fischer (19 77) and Gaver and Lehoczky (1979)

.

The characterization of the data queue as a Wiener process

with reflecting barrier allows one to discuss the dynamics of

the data queue. For example, suppose the data queue is at

level x at time t where x is large. One might wish to

study the time that elapses until the queue becomes empty.

This is the duration of a busy period started at x, and corresponds

to a first-passage time for a Wiener process which we denote

by t . Moreover one might also be interested in the area beneath

the sample path until it reaches the boundary of q, since

this area gives the total time waited by all customers involved

in the busy period. We let this area be A(x) and seek to

compute t = E(T ) and a(x) = E(A(x)). Straightforward

backward equation or martingale arguments give

16



t =
X

-x/m

(2.10)

a(x) = -
2m

+

2m

where m is negative, and m and a are given earlier. The

distribution of the first passage time can also be easily cal-

culated; however, its Laplace transform is most convenient to

find and is given by

-ST
E(e x

) = exp <?>
_

(
a, . /o

2

+ 2s

_ V

(2.11)
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4 . A Refined Diffusion Approximation

In this section we continue the development of a diffusion

approximation for the data queue length process. The analysis is

patterned after the important semigroup methods of Burman [1979].

One develops a sequence of Markov processes and studies the

behavior of their generators. One shows that the generators con-

verge and hence concludes that the associated semi-groups con-

verge. This entails the convergence of the finite dimensional

distributions. The limiting finite dimensional distributions

will be those of a certain Brownian motion. The theory underlying

this approach is based on theorems of Trotter and Kato, Kurtz

and Burman; the reader is referred to Burman (19 79) for technical

details. We will illustrate the approach in the context of the

special case v = 1, c = 0. The method applies to the case of

general c and v but the details are not given here.

Let {v(t) , t ^ 0} be the voice process, a Markov

process with state space {0,1}. Let N(t) be the data system

size at time t. We study the sequence of Markov processes

<{(X
n
(t), V

n
(t)), t > 0}>°°

=1 where

X
n
(t) = N(nt)//n and V (t) = V(nt) . (3.1)

The generator of this bivariate process is easy to compute

since V
n
(t) subordinates X

R
(t). Let f(x,k) be a function

with domain [0,°°) x {0,1} which is smooth as a function of x

for each k = 0,1. The generator is given by

18



<5n[f (x + l//n, k) - f (x,k) ]

+ (l-k)nntf(x - l//"n,k) - f(x f k)] + nQf(x,k)

for x > l//n
A f(x,k)=
n

(3.2)

6n[f(l//n, k) - f(0,k)] + nQf(0,k)

for x = .

where Q is the generator of the M/M/l/1 voice process and is

given by (2.1).

Next expand in a Taylor series and collect terms to

rewrite (3.2) as

A f(x,k) =-

nQf(x,k) + /n f (x,k) (6 - (l-k)n)

+ i- f (x,k) (6 + (l-k)n) + o(l)

for x > l//ri

nQf (0 f k) + /n f (0,k)6 + 4 f (x,k)<5 + o(l)

for x =

,2
where f (x,k) T£ f(x ' k > and f (x,k) = ~ f (x,k)

xx 8x

(3.3)

We wish to let n -* °° and focus attention on the data

queue process alone. To derive a diffusion limit for the data

19



queue process alone, we introduce a sequence of functions

oo

<f (x,k) > , for which f (x,k) > f(x), where f is a smooth
n n=l n

function satisfying f ' (0) =0. We wish to study the limiting

behavior of A f (x,k) . Let
n n

f (x,k) = f (x) + — g(x,k) + ^ h(x,k)
n /n n

where g and h are smooth. Clearly f (x,k)+ f(x). Sub-

stitution in (3.3) gives

A f (x,k) =
n n '

nQf(x) + Jn[Qg(x,k) + f • (x) (6 - (1-k) n ) ]

+ [Qh(x,k) + gx
(x,k) (5-(l-k)n) + j f " (x) (6 + (1-k) n) ]

x > l//n

nQf(O) + /n [Qg(0,k) +f'(0)5]

(3.4)

+ [Qh(0,k) + gx
(0 f k)6 + ±- f" (0) (6 ) ] x = .

We first note that Qf (x) = since Q operates on the

voice or k component only, not on the data. This eliminates the

first terms nQf(x) and nQf(O). We next examine the

Qg(x,k) + f'(x)(5 - (l-k)n) term. This can be rewritten as

20



Qg(x,k) + f'(x)[6 - (l-k)n - ( (6 -n ) + <$P )/(l + p )V V

+ f (x) ((6-n) + 6 Pv)/d + pv )

= Qg(x / k) + f ' (x)
v

1 + PV
+ k = f (x) n(i-p)

We now select the function g(x,k) so that

Qg(x,k) = -f (x)
v

1 + pV
+ k

The function g(x,k) must satisfy the equations

A(g(x,l) - g(x,0) ) = f ' (x)
np V

1 + p

(3.5)

-y(g(x,l) - g(x,0) ) = -f (x)
1 + P

The above equations are consistent and redundant, thus

any g(x,k) for which

g(x,l) - g(x,0)
f (x) n

yd + p )

will suffice . We select

g(x,0) = | f (x)

g(x,l) = (§ +

or
yd + pv )

-) f'(x)

* ( *' k) + (I +
y(l fp

v )
>

f,(x)

21
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This choice of g gives

nX.-/nn(l-p) f(x) + [Qh(x,k) + I f +
y {{fp )

J f"(x) (6-(l-k) n )

A f (x,k)
n n

+ i f"(x) (5 + (l-k)n)] ,

n( P -k(l+ P )

/n f (0)6 + f- (0)
*

}

v

x > l//n

(3.7)

v

+ Qh(0 ' k) + (i + vnr^r) f
" {m + i f "(°> 5

x =

Equation (3.7) can be rewritten recalling f'(0) =0 as

A f (x,k)
n n

-/n n(l-p)f ' (x) + Qh(x,k) + nf"(x) \ + n
n

,

k
-

. (p.-(l-k))
{

2 y(l+p ) ^d

+ i (p„ + (1-k))
2

v ^d

Qh(0,k) + nf" (0)

+ o(l) , x > l//n

(3.8)

l nk
p , - T + o P,d 2 y (l+p

v ) 2 P d , x =

or

A f (x,k) =
n n

-/n n(l-p) f (x) + Oh (x,k) + f" (x) n-Pd I 1 +

x > l//n

y(

nk \
+ o(l)

(3.9)

Qh(0,k) + f-( ) np
d
(i +TJ

^L_
r )

+ (l), x =

22



We rewrite

Qh(x,k) + f»(x)np a 1 +(^l5p-

as

n2p
d A p v ^\

, „, %
/ HPV

*h(x , k , + f'(x) jT^^yCk -IT^) + f"(*>nP d / 2
+ 1

and choose h(x,k) so that

n Pr Pv
Qh(x,k) = -f" (x) ,. ,

Q
. ( k - r—51

V \ ^v

The function h(x,k) must satisfy

n pd pvA(h(x,l) - h(x,0)) = f"(x) -?

y(l+Pv )

2

(3.10)

2
n Pd-y(h(x,l) - h(x f 0)) = - f"(x) 5

y(l+P
v )

2

These equations are consistent and redundant so a manifold

of solutions are possible. Any one will suffice. This choice of

h(x,k) allows one to rewrite (3.9) as
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f-vn" n (1-p) f ' (x) + f" (x) np
npV

A f (x,k) =
n n

%d+Pv )

2
+ 1 ] + o(l)

x > l//n

(3.11)

np.
f" (0) np

V .yd+pv )

2
+ 1 ] + o(l)

We now let n > °°. In order for (3.11) to converge to a

sensible limit, we must invoke the heavy traffic approximation,

that p -» 1 . Specifically we let p = p = 1 - (0//n) for some

6 > 0. Equation (3.11) becomes in the limit

A f (x,k)
n n

Af(x) =

-n9f ' (x) + f" (x)np
npv

l y(i+Pv )

2
+ l

f"(0)np
np.

u(l+P )

+ if

L f • (0) =

x >

x = (3.12)

This is the generator of a Wiener process with reflecting

barrier at 0, drift of -n e
/ and

np

T = np d
v

y(i+Pv )

+ l

The stationary distribution for such a process is an exponential

24



distribution with parameter

np.

y(i+P
v )

2
+ l

thus the mean queue length is given by

np V

,Vid + Pv )

+ 1

It is informative to try to apply this heavy traffic

result to a case in which p is near but less than 1. One might

replace 9 by /n" (1-p) . Since we have scaled by /n, the

stationary distribution of N(t), the unsealed queue length

should be approximately exponential with parameter

(1-P)

V< 1+<V J
The mean queue length becomes

np V
1-P V /i , \2

y (l+Pv )

+ l

This result is in exact agreement with Fischer (1977) and

is therefore exact. The fluid flow approximation treats n/y as

2
being large, hence [np /y(l+p ) ] is assumed to dominate 1. This

2
gives (n P-,P )/[y(l+p ) (1-p)] as the fluid flow mean queue length

found in Gaver and Lehoczky (19 79) and in Section 2 of this paper.
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The diffusion approximation thus found represents a refinement of

the fluid flow diffusion approximation. Even if r\/\x is large,

p may be small, so the 1 may be important.

Once the Wiener process infinitesimal drift and variance

have been found, one can also use the dyanmics of the Wiener

process to model the dynamics of the data queue process. Busy

period distributions, areas, and transient behavior in general

can be determined.
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